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Fuse model on a randomly diluted hierarchical lattice 
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Abstract. The first breaking current of the randomly diluted fuse network in a 
hierarchical diamond lattice is studied theoretically and numerically We show that 
the prediction proposed by Duxbury et af  for Euclidean lattices should he applicable, 
and ihsi ii is correci: the average current necessary to break rhe first bond oi rhe 
lattice decreases on average as the invase of the logarithm of the system size. Its 
validity is shown t o  rely solely on the self-averaging of the conductivity with system 
size. Due to the peculiar geometry of the lattice. the breaking current s a function 
of the lattiae size exhibits a series of plateaux followed by  sudden variations between 
them. Once the first few bonds are broken, the rest of the breaking of the network is 
no longer comparable to that of a Euclidean lattice: the mean breaking current for 

to break the first bond. 
?he entire !at& &cnrPrs ..ith sya!.Pm a im m.,dl &..er th., ?he ClWT& necrasq. 

1. Introduction 

A number of studies have been recently devoted to fracture models of disordered 
media, as reviewed in [I]. Various types of results have been obtained, and in spite 
of the simplicity of these models very different global behaviours have been reported, 
in particular concerning the extremely important size effect expected in these models. 
A classification of different behaviours has  been recently proposed [2], providing a 
unifying picture of these models. However, a lot of work remains to be done to 
provide a firm theoretical basis to a collection of intensive numerical simulations. 

The purpose of this paper is to investigate a simple type of disorder, dilution, that 
was  first considered by de Arcangelis et  a l  [3]. A fraction, q ,  of bonds in a lattice 
are missing at  random. All the other bonds are present, and they have the same 
behaviour: When the current j they carry is smaller than 1,  the bonds acts as ohmic 
conductors, with a conductance 1. When j reaches 1, the bond breaks, and it becomes 
irreversibly an insulator. 

Such a disorder has been previously studied, by Duxbury et al [4]. We will recall 
below their theoretical prediction which leads to a decrease of the failure current den- 
sity with system size L as a power law of the logarithm of L. Then this argument has 
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been used again in a variety of models which differ by the local behaviour: fuses with 
a residual conductivity [ 5 ] ,  dielectric breakdown [4], brittle springs [6], superconduc- 
tors [7], Born model [8], etc. 

However, the original argument by Duxbury e2 a/ (hereafter referred to as the DBL 
argument) contains a few approximations that are difficult to test directly. Indeed, 
a logarithmic decay of the mean threshold current is extremely difficult to test accu- 
rately. In this paper, we consider a simplistic geometry, namely that of a hierarchical 
diamond lattice. This geometry, together with some simple share loading rules, has 
been already considered by Sornette [lo]. For this lattice, we wil! show that in the case 
of a random dilution, all the conditions necessary to apply the same argument as for 
Euclidean lattices are fulfilled. The simplicity of the geometry allows us to investigate 
a considerable range of system sizes: 2”, or more than 5 decades between the smallest 
and the largest system, and this without any approximation. Furthermore, we will 
present a simplification, the constant conductivity approximation (CCA), which allows 
us to account for all observed features. This will allow us to test the theoretical pre- 
diction and show that it gives a reliable description of the breaking of the first bond, 
but not of the entire system. 

2. The DBL argument 

The argument developed by Duxbury el a /  [4] consists of two parts: the first one is to 
identify the current, IC, that is necessary to break the very first bond in the system. 
The second part is the hypothesis that  once one bond is broken, then the current to 
break a second, a third, .  . . , ntb bond will he smaller than IC, and thus I, will be the 
breaking current for the entire network. We will discuss the second hypothesis later 
on. However, the hierarchical lattice is likely to exhibit a behaviour different from 
that of a Euclidean lattice once many bonds are broken. Most of the rest of this paper 
is devoted to the derivation of I ,  for the breaking of the first bond. 

The analysis of Duxbury et  al for computing I, is twofold. The first step (A) is 
to identify the weakest part in the lattice, in the form of a large size defect of size I, 
and to compute the maximum current flowing at  its tip as a function of its size. The 
second step (B) is to compute the size of the largest defect r ( L )  one can encounter 
in a lattice of size L. 

A. Following [3], we choose as a typical defect a linear crack of size I, i.e. I consecutive 
aligned bonds. For such a defect placed in a uniform homogeneous medium, the 
maximum current flowing in the network is located at  the tip of the crack. This 
maximum current j ( I )  is proportional to the size of the defect to the power f (see [9] 
for a discussion of the finite size effects concerning this relation): j ( l )  0: d? for an input 
current I,, = L such that j would be equal to 1 for a defect-free system. Choosing 
another defect geometry, or moving to a three-dimensional medium, or changiag the 
local behaviour of the bonds may lead to a different power law; however, the key point 
is the existence of a positive exponent (I such that 

B. We now need to compute the probability p ( I )  that such a defect of size I is present 
in a lattice of size L. Neglecting the environment of this defect leads to p(l) = 9’ where 
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q is the probability that one bond is missing. Now to estimate the typical size P ( L )  
of the largest defect one encounters in a lattice of size L ,  we use the following result: 
p( l* (L) )  = L-' in a two-dimensional lattice, This simply means that the probability 
of the defect p( l ' (L) )  times the number of places where this defect can occur should 
be of order 1. Thus 

(2) 

Combining the two results A and B, one obtains a maximum current Rowing in a 
lattice of size L 

(3) 

The external current for which this bond will reach its threshold of 1, is the inverse of 
j,, times Io. Thus the conclusion of Duxbury et a1 is 

Some numerical computation reported in [3] shows that the current for which the 
first bond burns does indeed decrease with L logarithmically, with an exponent a ES 1, 
although the determination of this exponent is quite difficult. 

Let us comment a little more on some implicit hypotheses that were used in the 
derivation of the DBL argument as recalled above. In order to compute the maximum 
current Rowing around a defect, one has to assume that the environment of the defect 
is a homogeneous lattice. To take into account defect interactions in the general case 
is too complex for one to reach any reliable conclusion. Such a task can only be 
performed in the case of simple configurations of two defects, and it does not change 
the basic result (1) more than by different values of a. 

In contrast to this, in step B, for the computation of the probability of the oc- 
curence of a defect, one makes no assumption as to the environment of the crack. 
Indeed, the hypothesis that the rest of the medium is defect free would introduce a 
multiplicative contribution to the probability of the order ofpL',  which combined with 
the defect probability would prevent oen from deriving the result (2). 

The two contradictory assumptions implicit in the two steps ofthe derivation imply 
that the result (4) is not proved. I t  also seems difficult to improve the argument. 

3. Application to the hierarchical lattice 

Figure 1 presents the construction of the hierarchical lattice. We proceed recursively 
starting from one single bond. Then at  the next generation, we replace all bonds of the 
previous generation by a diamond offour bonds. Figure l(a) shows the basic recursion, 
and figure I (b)  shows the lattice obtained at  the fourth generation. Although this 
lattice has not the topology of a Euclidean lattice, its dimension is equal to 2. Thus 
it provides a simple example of a two-dimensional medium, on which many properties 
expected for Euclidean two-dimensional lattices can be tested, since the simplicity of 
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going from one generation to the next. Bottom: hier-hicd diamond lattice shown 
at the fourth genesation. 

the geometry allows one to  consider much larger sizes numerically, and to derive some 
analytical results. 

What are the ingredients necessary to apply the argument developed above? In 
order to get the result A, one needs an increase of the maximum current as a power 
law of the defect size, in an infinite size system. 

In appendix A, we give all the details of the computations of the maximum current 
flowing in a system at any generation, with one single crack of length 1. We report in 
figure 2(a) this evolution in a lattice of size 2" = 1024. We see a complex structure 
which certainly cannot be described by a single power law. The fact that this set of 
values does not show a monotonic increase in contrast to what happens in a Euclidean 
lattice has no significant effect on the validity of the comparison between these two 
types of lattices concerning the characteristics of the breaking of the first bond, hut 
it will affect the comparison for the rest of the evolution in the breaking process. As 
will be discussed later, we do not expect the whole breaking process to be strictly 
comparable in these two lattices. 

All data points are, however, confined to two power laws with exponents 0 and 1. 
We also note the following result: the fraction of cracks whose current increases faster 
than a given power law of I ,  I", (or equivalently the fraction of points in figure 2(a) 
that are above a line of slope a) is a continuous function of a that  goes from 1 to 0 as 
(I increases from 0 to 1. Let us consider the CCA developed in appendix A. For a crack 
of length I the maximum current flowing in the network can be well approximated 
by a constant times Z Z ( ' )  where z(1) is the number 1 in the binary representation 
of I ,  as discussed in appendix A. Such an approximation leads to the evolution of 
the maximum current as shown on figure 2 ( b ) ,  in good agreement with the previous 
result, when the defect size is small compared with that of the system, 1 << L. For 
2"-' - < I < 2", the number of crack lengths that satisfy j (1 )  = Z k  is equal to (:It). 
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Figure 2. (a) Evolution of the maximum current j in a lattia at the tenth generation 
as a function of the crack length 1 ,  on a log-log scale. The location of the cradt is 
along the dotted line in figure 1 ,  starting from one border. ( b )  As (n), hut using 
the constant conductivity approximation. A good agrement is found hetween both 
case8 when the crack Length is s m a l l  compared with the system size. 

The mean value of j ( l ) ,  ( j ( l ) ) ,  is thus 

Thus the maximum current increases on average &s la' where aI = log(;)/log(2) FS 
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0.585. However, very few crack lengths contribute to this average. Indeed, on average 

n +  1 

k=l 

thus 2(t(')) = 2("+1)/2 indicating an increase of the current as ("9 with a2 = i, One 
can go further in this analysis and show that the distribution of the maximum current 
*..- " ":--I- "-.."a. :- .-..I*:.----&-,. mL- -.._I.-- ^F "*""I7 l"--,l." c-- ... L:"L 1 :..--..-..- -- 
,VI a rrngrr; U n C I  L J  III"Il,LIIaLLIal. l L l C  LI"ILI"C:I U, LIPL1\ K , , ~ b . l ~  LVI W L l l L l l  , LLILLC.3aCS bJ 

I", scales as If(-), where 0 5 a 5 1. f reaches its maximum, f = 1, for a = $, and it 
drops to zero symmetrically either side of a = !j, when a = 0 or 1. More precisely, after 
some simple calculations (expanding the binomial coefficient using Stirling's formula) 
f(a) can be written as 

f(.) = log,(a-"(l -a)--)). (7) 
Let us return to the application of step A in the DBL argument. Let us now 

choose arbitrarily a value a, strictly less than $, and strictly positive. We disgard 
all crack configurations for which j increases less quickly than I"".  The fraction of 
the configurations that we reject scales as /'("o)-'. Since a, < $, this proportion 
tends to zero with I, and thus most configurations are kept. With this argument we 
have justified i'ne form A in the case of the hierarchicai diamond iattice with a striciiy 
positive exponent a. It  suffices now to reproduce step B of the argument with the 
selected subset, and thus to obtain the result of Duxhury et  a/ [4]. 

4. Solution using the CCA 

For all dilutions such that the network is above its percolation threshold (p > p ,  = 
(&- 1)/2), the conductance of the network converges rapidly toward an asymptotic 
value, as the system size increases. More precisely, the width of the distribution of 
the conductances of lattices of size L decreases as L-I .  This convergence allows one 
to simplify the complete treatment of the evolution of the maximum current which in 
principle should be treated jointly with that of the conductance. This simplification, 
presented in appendix A for the case of a single crack and in appendix B for a random 
dilution of the network, is referred to as the constant conductivity approximation, or 
CCA. The fluctuations of the conductance around the mean value are neglected, and 
the conductance of conducting networks is taken to be the same for all networks. As 
the fraction of broken bonds tends to zero, or as the lattice size tends to infinity, this 
approximation comes closer to the real solution. 

In appendix B, we present the derivation of the probabilities a(k,n) that  the 
maximum current in a lattice at  generation n is smaller than or equal to 2'. Indeed, 
within the CCA, the maximum current can only assume values that are integer powers 
of 2. We report here the basic recursion formula: 

n(k,n)=P,(n)n(k- 1,n-1)2+(1-P2(n))a(k,n-1)4. (8) 

Together with the initial condition, r(k,O) = 1 for all k ,  and with the expression of 
the probability Pz(n) sz (4qo)?" (see equationss (B5) and (B6)), this last equation 
determines the evolution of the mean maximum current 
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Let US note the following properties of r ( k , n ) .  For k > n, n(k,n) = 1 since it 
is not possible to generate a current larger than 2" in a lattice of generation n. At 
fixed n, +(k,n) increases with k, and for fixed k, r ( k , n )  decreases with n since the 
maximum current cannot decrease with system size. 

We will study the evolution of r(k,n) as a function of n at fixed k .  The two 
contributions of (8) play very different roles. Indeed the first one is only important in 
initiating a value of ~ ( k , n )  different from 1, and seting a gap between different k, as 
we will see below. 

When s(k,  n) is close to 1, as expected for small n, we write r(k, n) = 1 - c ( k ,  n). 
Equation (8) gives 

r(k,  n) = 2 P2(n) r ( k  - 1, n - 1) + 4 r ( k ,  n - 1) (10) 

where we have neglected P,(n) assuming P2(n)  < 1 as can easily be shown. Since 
r ( k ,  n) increases with n, and P2(n) decreases exponentially with n, we are led to neglect 
the first contribution in the right-hand side of (IO) as soon as r ( k ,  n - 1) is non-zero. 
This leads to  

r(k,n) GZ 4"-'-' c ( k ,  k + 1). (11) 

The first non-zero value c ( k ,  k + 1) is determined by the first term of the right-hand 
side of (10); which when iterated yields 

(1 - (4nd2)  (12) 
2 ( k t l ) _ ,  

= ~ ' ( 4 9 , )  

where P2(k) = (4qo)2k from (B5) and (B6). Equation (10) is only valid when the 
condition r << 1 is fulfilled. To obtain this limit quantitatively, we can compute the 
generation n*(k) for which r ( k ,  n) is of order 1, namely 

2(n*(k) - k - 1) + k + (2('t2) - 1) log2(4q,) = U(1) (13) 

n'(k) % 2' log,(1/4q0) (14) 

as obtained from (12) substituted in (11).  This gives the expression of 

for large k. Above this generation, ~ ( k ,  n) is expected to be small compared with 1. 
We can again use equation (8), and neglect the first term since r ( k ,  n'(k)) is of order 1, 
and P2(n) decreases exponentially. We obtain 

The probability that the maximum current is exactly equal to 2' is equal to 
n(k,  n)- r(k- 1,n) = w(k, n). Thus, when r(k, n) is close to 1, w ( k ,  n) = r ( k -  l , n ) ,  
and when ~ ( k ,  n) is close to zero, m(k, n) ES n(k,  n). 
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To summarize, starting from an extremely small value (a small number raised 
to the power 2', cf (12)), n (k ,n )  increases with n exponentially, for a number of 
generations (c n*), exponentially with k (equation (14)) and then rJ(k,n) decreases 
as an exponential of an exponential (equation (16)). 

From this description of the evolution of s(k, n),  we can deduce the scaling of 
(j(n)). The distance between two consecutive probabilities n ( k ,  n) when n increases 
by one becomes so large as n increases that only one dominates the others. The 
dominant w(k,n) at fixed n is the,one for which n is close to  "'(k). The mean 
maximum current is thus ( j )  ~ i :  P, with 

using ji4) i o  obiain k as a function oi n. Seiiing Viis vaiue back into the expression 
of the current, we obtain 

n 
(j) log,( 1/4q0) 

and thus a mean maximum current that is proportional to n = log,(L), i.e. the result 
of Duxbury ei a/ [4]. Note, however, that the result (18) has not been obtained by a 
reasoning parallel to that  of [4]. We have instead worked directly on the distribution 
of currents. 

Figure 3. Schematic plot of the maximum current M a function of the generation 
using the CCA. Since the maximum current can only he an integer power of 2, we 
expect to see a discrrte set of steps confined between two Linear behaviours. The 
mean increme of the current is thus Linear with the generation rm expected from the 
DBL argument. 

To complete our analysis, we should, however, notice an artefact of the hierarchical 
lattice, i.e. the fact that the maximum current can only assume integer powers of 2. 
Thus the k determined through (17) can only be an integer. This will produce a rather 
surprising effect sketched in figure 3: namely that the mean maximum current as a 
function of the generation wili display steps of larger and larger width and height. 
We also note that this is specific to the CCA. Considering the problem without any 
approximation will generate in the first iteration a distribution of maximum current 
with a certain width. This statistical spreading of the data is expected to restore a 
smooth mean trend similar t o  that of (18). However, as the lattice size increases, we 
become closer and closer to the hypothesis of the CCA, and thus the discreteness of 
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k will appear. This size effect is expected to be smaller in the case of a small initial 
value of go. 

Let us note here an additional similarity between the hierarchical lattice and a Eu- 
clidean lattice. Li and Duxbury [ll] have shown that the current distribution presents 
an exponential tail for large currents. This observation allows us to rederive the vari- 
ation of the maximum current as a function of the system size. For a hierarchical 
lattice, the current distribution (and not of the maximum current) presents also an 
exponential decay for large currents. The way to have access to this information is to 
correct the recursion relation (8) in order to erase the selection of the maximum ele- 
ment in the writing of this relation. The fact that the maximum current was selected 
previously introduced the exponentiation of T in (8) to the second and to the fourth 
power. The probability p(k ,  n) that a current is larger than or equal to Zk in a lattice 
at the nth generation satisfies a linear relation: 

~ ( k ,  n) = P,(n)p(k - 1,n  - 1) + (1 - P,(n))p(k, n - 1). (19) 

It  is a simple matter to show that for fixed k, the expression of p ( k ,  n) can he written 
for large n as 

where the current j is equal to Zk as before. This probability is simply that of en- 
countering a defect of iength i = 2’. Tnus the current distribution is proportionai to 
d,, as expected for an Euclidean lattice. 

Duxbury and Leath [12] used the previously recalled result in order to obtain the 
form of the survival probability for a lattice of size L subjected to a current I using 
extreme statistics theory. The probability, P(1, L), that  no bond breaks under the 
application of a current density I assumes the following form: 

P(1,  L )  o( exp(-ald exp(-bill)) (21) 

where a and b are constants. Obviously for a hierarchical lattice such a form is also 
expected, since i t  is equivalent to the law of decrease of the breaking current of one 
bond. This result relies on the hypothesis that the current variable can be assumed 
not too much correlated. 

At the end of section 2 we have criticized the derivation of the DBL argument 
noting that it was local and that it neglected the environment of the crack. We have 
seen, however, that in the case of the hierarchical lattice, both steps A and B can be 
satisfied due to the fact that the CCA holds. In this case, since we can neglect the 
influence of the main crack on the conductivity of the lattice, the maximum current 
occurs as a result of a local environment, and it is not necessary to describe accurately 
the geometry of sublattices whose size is larger than the crack size. This makes the 
DEL analysis valid in this case. The transposition to Euclidean lattices is certainly 
correct since the basic sufficient ingredient has  been shown in our study to be the 
self-averaging of the conductivity with system size, a generic property of any lattice of 
dimension larger than 1: as soon as the lattice is not close to the percolation threshold. 
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5. Numerical computations 

In order to test the above analysis, we have performed some numerical simulations of 
the maximum current as a function of the generation of the lattice. These simulations 
did not involve any approximation such as discussed previously. We only used the 
hierarchical structure of the lattice. We record for each lattice both the conductance 
and the maximum current flowing through it for a total input current equal to unity. 
As soon as four lattice of the same generation were generated we computed the pair 
(g, j) of the lattice at the next generation, and we erased the four previous pairs. 
This procedure allows us to store only a small amount of information, although the 
maximum size of the systems generated were rather large, 217. At most four pairs of 
numbers have to he stored at  each generation. The limiting factor of these simulations 
is the computation time. 

OJ 
0 5 10 IS 20 

Figure 4. Average maximum current Rowing in a lattice for a dilution p = 0.8. as 
a function of the generation of the lattice, n, or equivalently the logarithm of the 
system size n = log2(L). 

We studied two dilutions: p = 0.8 and p = 0.99. The first value was chosen 
so as to  be simultaneously far from the percolation threshold, which is in this case 
p ,  = (4- 1)/2 w 0.618, and from p = 1. The second value of p was chosen so as to 
see sooner the large size behaviour (see (14)). In both cases, we generated one lattice 
of the 18th generation, and thus four lattices at  generation 17,. . . , and 417 at the first 
generation. 

Figures 4 and 5 shows the average maximum current as a function of the generation 
(or equivalently the logarithm to base 2 of the system size), for both dilutions. Two 
regimes are clearly visible on these plots: For small system sizes, (generation less 
than 14 and 12 respectively) j increases linearly with the logarithm of the size, in 
agreement with the DBL result with an exponent a appearing in (1) equal t o  1. In 
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0 
0 5 10 I5 20 

Figure 5. As figure 4, but for a dilution p = 0.99. 

U i 4 6 8 io 

Figure 6. Computed probability m(k ,  n) that the maximum crack is of size 2* in a 
lattice at generation n, BS a function of n using the CCA. The first five values of li 
are shown on this plot. 

contrast, for large system size j departs markedly from the previous linear behaviour. 
j seems to saturate at a constant value. Let us note that already for small sizes in 
the case of qo = 0.01, figure 5, we can see some oscillations in the data points. These 
oscillations are not due to poor statistics, but on the contrary they are a systematic 
effect: the steps that were obtained in the evolution of j with the CCA, are indeed 
expected to be more and more visible as L increase and for small q. Similarly, the 



1636 S Rout el a/ 

35 1 
34 I 

i 
25 

20 

1 5 -  

10' 

Figure 7. (a j  As figure 4, but using the C C A .  We see the discrrte steps more clearly 
than in figure 4, but the mean trend is similar. ( b )  As figure 5,  but using the cCA. 

For values of the initial dilution qo aa small as 1%. the agreement with the real value 
in better, and begins for smaller sizes. 

apparent saturation of the maximum current is also the manisfestation of the discrete 
nature of the possible maximum current. For n > 17, figure 5 will show larger and 
larsez osc.i!!ationsi aa sketched in figure 3, wit,h hcwever an a v ~ z g e  !he%! inaeasc zs 
predicted from (18). 

In order to see this point more clearly, we have performed an analogous simulation, 
considering the CCA. The difference with the argument developed in the previous 
paragraph, is that  we did not simplified the expression of the various probabilities (in 
particular Pz(n)). 

Figure 6 shows the evolution of the probabilitites m(k, n) as a function of n for 
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the first few values of k for the case qo = 0.2. On a semi-log scale, we see that 
these probabilities tend to display the properties that were obtained in the previous 
paragraph, when k is larger than 2 or  3. In a first stage, the probability w increases 
as an exponential of n, then reaches a maximum, and finally decreases abruptly as an 
exponential of an exponential. We also see that these functions have approximately 
the same shape for different values of k and one can be deduced from another by 
a simple translation along the n axis. The mean distance between these functions 
counted along the n axis increases with k, as can be expected from (14), which gave 
the position of the maximum as a function of k. 

Figures 7(a) and 7(b) shows the evolution of the mean maximum current as a 
function of the generation using the CCA for qo = 0.2 and 0.01, respectively. We see 
distinctly the steps that were sketched in figure 3. Comparison between figures 4 and 
7(a), and between figures 5 and 7(b), indeed shows that the CCA becomes more and 
more valid as the lattice generation increases, as previously expected. This allows 
us to conclude that for large system size, the evolution of the maximum current is 
expected to follow that sketched in figure 5 ,  although a direct simulation would rather 
suggest a saturation effect. 

6. Complete f r a c t u r e  of  the lattice 

Finally let us note that although we believe the results exposed above concerning the 
features of the first broken bond to be fairly general, i t  is not the case for the whole 
evolution of the fracture. The reason for such a difference is the presence of holes of 
all sizes in the hierarchical lattice. Thus, if we imagine a single crack developing in a 
homogeneous medium, the series of breaking currents at each step of the propagation 
of the crack will reproduce the series shown in figure 2(a). 

Thus, we see that a simple linear growth of a crack is not a likely scenario: the 
maximum current would in this case decrease to values as low as 2, whenever the crack 
encounters a hole of its size, i.e. a trap. Due to the hierarchical construction of the 
lattice: holes of all sizes are present in the lattice, as can be seen from figure 1. This 
can be likened to the classical way of stopping crack propagation by cutting a circular 
hole at the crack tip, so as to eliminate the singularity of the stress a t  this point. 

What will happen can, however, be guessed rather straightforwardly. First the 
dominant crack will grow until i t  reaches a hole that makes its maximum current as 
low as that of the second defect present in the initial geometry. This process will then 
take place at all scales until all cracks have made their way to a trap. Thus we expect 
that the number of bonds to be broken at  the end of the breaking process with be 
of the order of L2 (up to logarithmic corrections). Some numerical simulations of the 
complete fracture process, and not only for the first bond, can easily be performed. 
However, these are much more demanding in terms of computer time. Going up to the 
tenth generation indicates that the number of broken bonds when the current reaches 
its maximum. Nc(n), increases with the generation n of the lattice more quickly than 
L'"' (where L = 2"): the log-log plot of N,(n) against L is strongly curved upward, 
and thus the tangent slope for n = 10 is certainly a lower bound for the true exponent, 
in agreement with the expectation 2. 

In fact, under the assumption of the validity of the CCA during the entire fracture 
process, the problem has been solved analytically by Gabrielov and Newman [13]. 
These authors indeed considered such a hierarchical lattice with a distribution of 
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strength for each bonds, together with a load sharing rule for the network that is in 
fact identical to that used in the CCA. Gabrielov and Newman 113) did not try to 
justify this approximation, but they obtained the very general conclusion that the 
mean breaking current for the entire lattice decreased with system size as 

II Ae+-.,-oa -.."I. .l-..m- +I.." &I..,+ - - l - t . 4  I h . .  h-..-L:"- - $ - - - - : - - I n  !---A ..̂  -: 
"I (. " z . c L c - ~  111"L.l Y l V n r l  YL'aLLI Y u a n ,  LC.-"C" Y" Llllrj " L C a " ' L 1 6  "I U,,= D,,,6'r ""l," aa g,rcr, 

in (4). The method they used is rather different from our approach. It is based on a 
renormalization equation of the full probability distribution for a complete failure of 
the system. It thus takes the effect of traps mentioned above fully into account. Our 
approach has shown the validity of the CCA for random dilution. However, one would 
need a stronger property, namely the validity of the CCA during the entire fracture 
process in order to app!y direct!y the proof of C-abrie!~!, and E e w n a ~ n  to o ~ r  syste-. 

Let us mention that for Euclidean lattices, the trapping of cracks into holes is not 
expected. However, some preliminary simulations on two-dimensional square lattices 
shows that the entire network does not break down as soon as one bond is broken. 
The increase of N J L )  is however not as strong as in the case of the hierarchical lattice 
(L'), but rather N J L )  a L log(L) [14]. This last observation seems to indicate that 

the breaking of the entire lattice. Thus the problem of the entire fracture is still open, 
until any firm conclusion concerning the number of broken bonds at maximum force 
is found. 

the argum..? derived tor ?he brezking of ?he first b0.d cz!!!!ot be .sed to determine 

7, Cnnc!n&n 

We have seen that the evolution of the maximum current encountered in a randomly 
diluted hierarchical lattice exhibits the mean scaling features expected for Euclidean 
lattices, as predicted by Duxbury et al [4]. However, The geometry of the lattice 
produces an increase of the maximum current with system size by discrete steps. 

The breaking of the whole lattice is expected to give different results for a hierar- 
chical and a Euclidean lattice. 
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Appendix A. Computation of the maximum curren t  for si single crack 

All information needed to  characterize the maximum current in a lattice of any size 
and structure is given by the pair (9 ,  j), where g is the conductance of the lattice and 
j the maximum current density that flows in the medium for an input current that 
would give a unit current in all bonds if the lattice were intact. 
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Due to the symmetries of the diamond lattice, we may locate the  crack in the top 
row of figure 1, as shown by a dotted line. If we consider a crack of length I in a 
medium of size L = 2", two cases can occur: either the crack is shorter than L / 2  
(case 1) or it is longer (case 2). 

For case 1, let the pair ( g , j )  be relative to the sublattice (at generation (n - 1)) 
that contains the whole crack. I t  is straightforward to compute the pair ( g ' , j ' )  for the 
entire lattice a t  the nth generation. After some simple calculations, the transformation 
can be written as 

For case 2, one sublattice is cut by the crack, whereas the sublattice in parallel contains 
the tip of the crack. We can again compute ( g ' , j ' )  to be 

j' = & ( j )  = Zj, 

Let us first study the conductance of the lattices, using the fact that dl and GI only 
depend on g. For a crack of length 1, we are in  case 1 at all generations of the lattice. 
Thus the conductance at the nth generation, gn, is obtained by n successive iteration 
of the function q+, ,  g, = +p)(O), where the superscript (n) stands for iterations. It 
is trivial to show that gn converges towards the only fixed point of dl(z), i.e. 1, 
exponentially with n. For large enough n ,  gn can be written 

g, 2: 1 - '44-n. (A3) 

Due to the symmetry of the lattice, we can always choose to start the crack from 
the left side of the top row. For a crack length I larger than 1, we use the binary 
representation of I as I = aia i- , . . . .alao. For any order j ,  if aj  = 1, then the sublattice 
at the j t h  generation is cut (case 2) and thus we need to use the function &. If aj = 0 
then the sublattice in parallel with the crack is intact and thus we have to use 4,. 
Combining the successive cases relevant to the crack geometry, the conductance at  the 
nth generation, for n 2 i + 1 is given by 

9" = + ~ " (  4 ~ ~ - ~ ( + ~ ~ - ~ ( . . . 4 ~ ~ ( 0 ) ) . . . ) ) )  (-44) 

where kj = Q~ + 1. Since for all index larger than (i + 1) the crack is confined into a 
sublattice that will always he in case 1, a is zero, or k is 1, we will finally always be 
in a situation similar to that of a crack of length 1, and thus g, always converges to 1 
exponentially with n as in (A3). 

In order to obtain the maximum current as well as the conductance, the compu- 
tation is quite similar. The series of functions t o  iterate is given again by the binary 
writing of 1. Such a computation gives the evolution of the maximum current as a 
function of its length in a lattice of size 2", as shown in figure 2(a). However, the fact 
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that j ' depends both on j and g makes the computation a little more complicated. In 
order to obtain a simpler expression for the maximum current, we now introduce an 
approximation: the constant conductivity approximation (referred to throughout this 
paper as CCA). 

Indeed the conductance approaches unity extremely fast with n (see (A3)), as 
soon as the system size is larger than the crack length. Thus we propose to set gn 
equal to its asymptotic value of 1, in the computation of the maximum current j ,  at  
the nth generation. With this assumption, the function $,(j,g) simplifies t o  $;(j) = 
&(j, 1) = j .  For case 2, the function $ 2 ( j )  = Z j  obviously remains unchanged. 

The very simple form of the resulting transformations ${ and $ J ~  allows one to 
write down explicitely the expression of the maximum current using the CCA. For a 
crack of length I we use an equation similar to (A4) using 11 instead of 4 functions. 
We obtain simply 

(A5) j " ( / )  = j, 20-2a-1 . . .  2 0 0  = j ,  2 4 ' )  

where the function + ( I )  is the number of 1s in the binary writing of I. We should note 
that (A5) is now independent of n, since increasing n simply consists of iterating the 
function $; ( j )  = j. 

In simple terms, within this approximation, every times a sublattice shares its 
current with another one, the maximum current stays constant, whereas when it  is 
alone, its current is doubled. Figure 2 ( b )  shows the simple result (A5) compared with 
the real solution already displayed in figure 2(a). We see a good agreement for system 
sizes much larger than the crack length. Introducing a free scale factor in the CCA 
result for jn, (i.e. choosing j ,  at  the zeroth generation in (A5) a free parameter) 
allows us to obtain both an upper and a lower bound for the true solution. Thus the 
scaling properties we can extract from this approximate solution are also valid for the 
solution without approximations. 

Let us note finally that the real interest of the CCA approximation lies in the more 
complex case of the random dilution studied in greater detail in appendix B. 

Appendix B. The random dilution case 

In this appendix, we derive the probability of encountering a given maximum current 
as a function of system size in a randomly diluted hierarchical lattice. 

As in the appendix A ,  we note that each lattice, at any generation, can be char- 
acterized simply by the pair (g,j) where g is the conductance of the network, and j 
is the maximum current flowing through it for a unit external current. Going from 
one generation to the next consists of computing the resulting pair (g', j') after having 
combined four sublattices (g,,j,), (g2,j2), (g3,j3), and (g4,j4), first in series tweby- 
two, and then in parallel. Thus when all four lattices are conducting (case 1) 
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using the same notation as in appendix A. If one branch does not conduct (say ga = 0 
or/and g4 = 0), whereas the other one is not cut (case 2), then 

Finally, with a finite probability, both branches are cut. This case can be treated 
separately since g' = 0 and j' is undefined. In the following, we will only consider 
sublattices which have anon-zero conductance, and we will combine them with weights 
that respect the probability of each case. 

Let us call q, the probability that a lattice at  the nth generation is broken, and 
p, = 1 - q, that i t  is conducting. At the (n + 1)tb generation 

033) 2 
%+I = 4 3 2  - 4") 

Starting above the percolation threshold, q,, > (3 - &)/2, q, converges towards 0 
with n. Close to zero, qn is approximately given by 

(84) 2 q, = 4q,-1. 

Under iteration, we find that 

9, = (1/4)(4no)". (B5) 

Thus qn approaches 0 exponentially with system size qn cs (4q#'. For the lattices 
that percolates, the probability, P,(n) and P2(n) to be in cases 1 or 2, respectively 
amount to  

Keeping only the dominant terms gives P,(n) = 1 - P2(n) and P2(n) = 4%. 
We now have all the ingredients for studying the evolution of the conductivity and 

of the maximum current as a function of lattice size, or equivalently the generation. 
As before, we first consider the conductance of the network. 

The probability to percolate tends to  1 as n increases, and thus Pl(n) also con- 
verges to 1. We alsonote that the function @, is contractive, and thus the distribution 
of conductances becomes narrower as n tends to infinity. Assuming that all the con- 
ductances of the four sublattices, gi (i = 1,4),  are close to a common limit, g, we see 
that 0, can be rewritten in a simpler form as 

9' = ab, + 92 + 93 + 94) .  (B7) 

Thus, the central limit theorem allowsus to  conclude that the conductance distribution 
tends to a Gaussian with a width that scales as the inverse square root of the total 
number of bonds, or in two dimensions, L-'. 
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Thus, we see the similarity with the previous case o f a  single crack in an otherwise 
intact lattice. The convergence of the conductance towards a well defined value, 
allows us to simplify the iteration relations (Bl)  by assuming from the beginning that 
all conductances are set to the same value. This approximation is the CCA that  was 
introduced in appendix A. The function '# can now be written under this simplifying 
assumption as 

In addition, since at the zeroth generation, all current are unity, j ,  can only assume 
values which are integer powers of 2. 

This last remarks shows that in order to characterize the statistical distribution 
of maximum currents in a lattice a t  a generation n within the CCA,  it is sufficient to 
know the probabilities ~ ( k , n )  that  the largest current satisfies j,,, 5 Zk.  

We can simply read from (B8) the recursion relations between these probabilities 
at two consecutive generations. The probability that the maximum of two currents 
satisfies max(j,,j,) 5 2' at the nth generation is a(k,n)', whereas for four currents 
it is ~ ( k , n ) ~ .  Thus using the probability P2(n) that one branch is broken, gives the 
recursion form 

+, .) = P,(~),+ - 1, - 112 + (1 - ~ , ( ~ ) ) ~ ( k , ~  - 114 (B9) 

with the initial conditions r ( k , O )  = 1 for all k 2 0 
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